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I. INTRODUCTION

Many solid materials under moderate shock loading exhibit a two-wave structure where the
first one is essentially an elastic wave followed by a slower plastic deformation wave front. Ref-
erences [1] through [10] contain experimental data which illustrate this elastic-plastic-shock
phenomena (EPSP). Selected wave and particle velocity results from this classic experimental
information for iron, aluminum alloys, and pressed TNT are shown in Figures 1 through 6. Vari-
ous theoretical aspects of EPSP are described in References [7] through [14].

The elastic wave generated under EPSP conditions is called the Hugoniot Elastic Limit
(HEL) to distinguish it from a dynamic elastic limit which could occur from less severe transient
load conditions [13]. It is noted in reference [12], page 191, that the HEL condition can produce
the same effect as a phase transition. That is, an additional wave is formed.

The main purpose of the przsen, repcrt is to provide evidence that the HEL particle velocity,
UPHEL, is fundamentally determined (or essentially limited) by the De Broglie momentum velo-
city-wave length relation which applies for any type of particle motion (Reference [15], page
479; and Reference [16], page 433). Consequently, new insight with respect to the EPSP is pro-
vided by the fact that experimentally observed steady state, or stable, values of UpHEL compare
favorably with the De Broglie velocity, V1. Vi is computed for an unperturbed atomic lattice (see
Section II). These comparisons are shown herein for shock loaded iron, aluminum alloys, and
TNT, which exhibit EPSP and HEL stress waves.



II. THE De BROGLIE PARTICLE VELOCITY, Vi = H/(2MDI)

Fitzgerald ([17], Chapters 1 and 3) delineated the importance of the De Broglie momentum
wave-wave length particle velocity, Vi, with regard to impacted solid material behavior. The De
Broglie velocity, V1, is:

h h
2md, (1)

Where:

Vi = Limiting particle velocity which can occur without permanent lattice distortion
(plastic flow); or the limit particle propagation velocity in a stationary lattice.
Units are cm/sec or km/sec

h = Planck's Constant

= 6.6262 • 10-27 (gram)(cm 2)/sec

m = Mass of one atom, grams

di = Closest distance between the atoms in a crystal lattice, or the atomic spacing in a
slip direction, units are cm or angstroms, A0, (1 AO - 10- cm)

k, = 2 di = wave length associated with the momentum, mV1. It is the shortest wave
length possible in an undistorted lattice or stationary lattice, cm or AO.

Table 1 lists Vi information for iron, aluminum, and TNT (Po = 1.648 g/cc). The values for
iron and aluminum are from Reference [17]. Vi for aluminum was employed for the aluminum
alloys (2024 and 6061) since they contain a very high percentage of aluminum. For TNT, an av-
erage value of the mass (may) of an atom and the average distance between atoms (dlav) was
computed in the manner outlined in Reference [18]. These average values (mav and dlav) were
employed in Eq. (1) to compute Vi for TNT.

Table 2 lists longitudinal elastic wave velocity, CL, information for the materials considered
in this report. Also shown in Table 2 is the elastic wave pressure, Pv, corresponding to the wave
velocity, CL, and the particle velocity, Vi. This is given by:

Pvi a p0CLV1 (2)

where po is the material density (grams/cc).
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TABLE 2. Tabulation of CL and Pv1 .

TABULATION OF CL AND Pvj

Material po CL Vi Pv1

g/cc km/sec km/sec kbars

Iron 7.84 6.04 0.0144 6.82
[21

2024 -T4 2.70 6.41 0.0258 4.46
[7]

6.236061 -T6 2.70 [8] 0.02584.34

TNT 1.648 2.798 0.0832 3.84
[101

=( eo CL V1  (G) cc = MBARS
-c u -sec u - sec

P(KBARS) = 10 3 P(MBARS)

I KBAR = 14,504.0 PSI
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III. FITZGERALD'S PARTICLE VELOCITY STABILITY CRITERIA

Fitzgerald, utilizing his concept of reversed lattice motion ([ 17], Chapter 3) shows that
particle velocities from approximately 0.50 Vi to 0.75 Vi are in an unstable region and can jump
to values higher than Vi. Fitzgerald cites experimental results from Professor Bell and co-work-
ers at Johns Hopkins University which support the analytical prediction.

Particle velocities in the immediate region around Vi appear to be stable.

In addition, Fitzgerald also showed 2Vi was an important unstable velocity where exces-
sive distortion would occur. This analytical result also compared favorably with experimental
results obtained by Bell and co-workers for aluminum and copper. These experimental data
were acquired from end-to--end cylindrical rod impact via diffraction grating instrumentation.

Professor Bell summarizes his results in Reference [21] and lists three critical or transi-
tion particle velocities which were experimentally discovered in pure aluminum. They are listed
as follows and compared to Vi for aluminum (2580 cm/sec from Reference [17])

Vrl = 1478 cm/sec = 0.573 V, - 0.6 V

Vcr2 = 3350 cm/sec = 1.298 V1 - 1.3 Vi

Vcr3 = 5080 cm/sec = 1.969 V1 - 2.0 V1

The comparison is remarkably good, particularly for VCRI and VCR3.

Thus there are three important velocity regions:

1. 0.50 V1 to 0.75 Vi; unstable, may jump to a magnitude greater than V1 .

2. V, vicinity; apparently stable.

3. Vi to 2Vi; unstable, particle velocities in this region will approach Vi under "long
term" operating conditions. Ample time is necessary to allow particle momentum sharing with
a sufficient number of lattice masses, (see [17], pages 72 to 74). This, by definition, is a relax-
ation time.



IV. EXPERIMENTAL HEL UpHEL DATA AND COMPARISON WITH Vi
MAGNITUDES

A. Iron

References [1] through [6] document experimental investigations of shocked iron. Fig-
ure 1 depicts experimental data points for HEL wave velocities as a function of the particle ve-
locity. No actual data points for the plastic wave data are shown. Instead, a recommended [6)
linear fit to the plastic wave ve!ocity is illustrated. Only a few data points (with considerable
scatter) were available for particle velocities less than 0.06 km/sec and the primary focus of the
present study was the elastic wave behavior.

Various investigators found that the HEL for iron depended on the test specimen thick-
ness. Figure 2 illustrates experimental UpHEL data as a function of test specimen thickness. A
very corroborative data point in Figure 2 was found in Figure 14 of Reference [19). Reference
[19] is an historical review article concerning shock physics investigations performed at Los
Alamos National Laboratory. The initial particle velocity (free surface velocity divided by 2)
was practically identical to Vi for this specimen thickness (24.7 mm).

V1 and 2Vi indicators for iron are shown in Figures 1 and 2. The experimental values for
UpHEL vary from approximately 0.5 Vi to 2.4 Vi. Most of the UpHEL magnitudes lie between V1
and 2V1.

As shown in Figure 2, UpHEL - 2Vi for the thin specimen and UpHEL approaches V1 for
thicker specimen. Thus, the initially overdriven "elastic" wave UpHEL is not stable near 2V1. It
decays or relaxes to a stable value (Vi) provided that the sufficient time (travel distance or speci-
men thickness) is available. This experimentally observed behavior corroborates remarks made
in Section III with respect to the unstable region 3 where Vi < Up < 2Vi.

See also the initial remarks in Section II of Reference [201 with respect to the asymptotic
particle velocity decay exhibited by the data in Figure 2. This reference employs dislocation
theory to model the observed phenomena.

An earlier phenomenological model for the relaxation time, T, is developcd in Reference
14]. Reference [4] equations for - and specimen thickness, L, can be written in terms of V1 and
2Vi. This is because 0.0140 and 0.0280 mm/4L-sec appear as constants in the equations and V1
and 2VI are equal to 0.0144 and 0.0288 mm/li-sec respectively. The significance of the number
0.0140 mm/L-sec is that it was the observed steady state particle velocity, which is shown in
Figure 2 to be V1.

6



B. Aluminum Alloys

1. 2024 Alloy

Reference [7] documents Fowles' classic experimental and theoretical study of
EPSP for both hard and soft 2024 aluminum alloy specimens. Initial and final values of the elas-
tic wave free surface velocities (2 - UpHEL) were tabulated in Reference [7]. These UpHEL data
are plotted in Figure 3 which apparently indicates that over-driven transient behavior was exhib-
ited by the "elastic" wave particle velocity data for both hard and soft specimens. However, un-
like iron, none of the UpHEL magnitudes exceed 2Vi. The general relevance of the De Broglie
velocity, V1, to UpHEL behavior is substantiated by these data for 2024 aluminum alloy. Certain-
ly, the UpHEL magnitudes compare reasonably well with Vi.

2. 6061-T6 Alloy

Experimental EPSP results for 6061-T6 aluminum alloy are documented in Refer-
ences [8] and [9]. Elastic and plastic wave velocities and corresponding particle velocity infor-
mation from reference [8] is graphically illustrated in Figure 4. UpHEL data from Reference [9]
are plotted versus specimen thickness in Figure 5. This UpHEL information was obtained from
the initial step rise of the transient free surface velocity (Ufs) data in Figures 4, 5, 6, and 7 of
Reference [9]. The initial Ufs was carefully scaled from these figures and then UpREL was com-
puted via the well known relation:

Up = Ufs/2 (3)

As illustrated in Figure 4 (Reference [8] data), the particle velocities for elastic
waves ( with no following plastic wave) do not exceed V1 by more than approximately twenty
percent. This indicates that the limiting particle velocity for a true elastic wave was essentially
Vi. When the loading increased to until EPSP began, the "elastic" wave velocity and particle
velocity behaved in an erratic manner. This may be indicative of the instability that could be ex-
pected where V1 < UpHEL < 2V1.

Compared to iron (Figure 2), UpHEL for 6061-T6 (Figure 5) exhibits very weak de-
pendence on the specimen thickness (or time). The trend is that shown by the data collected
from Figure 4 of Reference 9. UpHEL magnitudes vary from about 0.80 Vi to 1.30 Vi. Thus for a
rather wide range of specimen thicknesses and input shock pressures (Pmax), UpHEL was within
thirty percent of Vi. The asymptotic stable value of UpHEt. was approximately 0.85 Vi, or essen-
tially Vi.

These HEL data for 6061-T6 confirm the importance of Vi and substantiate the re-
marks in Section III with respect to particle velocity stability when Vi < UpEL < 2Vi.
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C. Pressed TNT

Very interesting experimental EPSP results for pressed TNT (po = 1.648 g/cc) are re-
ported in Reference [10]. Elastic and plastic wave velocities are plotted as a function of their
associated particle velocities in Figure 6. This figure is similar to Figure 6 of Reference [10] and
Figure 11-13 of Reference [11]. These EPSP data for this polycrystalline organic material exhib-
it metallic like behavior (see Figures 1, 3, and 4).

Only the Vi indicator line is drawn in Figure 6 which depicts the pressed TNT EPSP
wave and particle velocity experimental results from Reference [10]. Even though there is a
specimen thickness size effect on both the HEL wave and particle velocities, none of the HEL
particle velocities exceeded Vi. The highest value of UpHEL was 0.0739 km/sec or 0.89 V1.

13
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V. CONCLUSIONS

Although this is not an exhaustive investigation, enough information has been presented to
indicate that:

A. A basic reason for EPSP to occur is because the De Broglie relation Eq. (1) specifies
the limiting velocity (Vi) at which an atom of mass, m, can travel in an undistorted or stationary
lattice structure where di is the smallest distance between atoms. The plastic wave particle ve-
locity is Up = h/(2mdl I' ) so that the lattice spacing must change from di to d,' to accommodate
the irresistibility driven particle. This is a rather violent and catastrophic event whose conse-
quences are the same as a polymorphic phase change. A phase change causes a two-wave struc-
ture since the De Broglie relation must be satisfied by adjustments made to the atomic spacing
in the new lattice structure. Thus there is one wave fron the old lattice structure plus an addi-
tional wave from the new structure.

B. UpHEL for the stronger metals (iron 2024-T4 and 6061-T6) was generally between Vi
and 2W. Apparently strong metallic atomic lattice bonding requires that UpHEL must be "over-
driven "greater than V1 to displace or distort the lattice plastically (reduce di to di' ) and thus
allow a plastic wave particle velocity which is Up = h/(2mdi').

C. The "weak" materials (annealed 2024 alloy and pressed TNT) did not require "overdri-
ven" HEL particle velocities for formation of plastic waves. Essentially V1 was an upper bound
on HEL particle velocities for these materials.

D. Vi is the steady state stable UpHEL for iron and 6061-T6, even when UpHEL had been
overdriven as much as 2.4 V1. If sufficient time (or specimen thickness) was available, UpHEL
decayed and asymptotically approached V1 as a lower bound. This is consistent with Fitzger-
ald's [17] stability analysis for Vi < Up < 2V which indicates that this is an unstable region.

E. Although UpHEL magnitudes may reach 2.4 Vi as shown for iron, most UpHEL values do
not exceed 2V. This is consistent with Fitzgerald's analysis showing the importance and criti-
cality of 2V.

15



IV. RECOMMENDATIONS

Additional EPSP data for other materials should be investigated for the De Broglie velocity,
Vi, influence at the HEL conditions. Certain anomalous behavior observed at low level shock
loadings could possibly be explained as a Vi effect. If this is suspected, then Vi s'lould be com-
puted via Eq. (1) and compared with experimental particle velocities (Up) in the region of inter-
est.

16
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